next up previous contents
Next: 3.4 Demagnetizing Field and Up: 3.3 Discretization Previous: 3.3.2 Magnetocrystalline Anisotropy Energy   Contents

3.3.3 Zeeman Energy

The Zeeman energy of a magnetic body $\boldsymbol{J}(\boldsymbol{x})$ in an external field $\boldsymbol{H}_\mathrm{ext}(\boldsymbol{x})$ is simply given by

$\displaystyle E_\mathrm{ext}=
\int_\Omega w_{\mathrm{ext}}(\boldsymbol{J}) d{v} $ $\textstyle =$ $\displaystyle \int_\Omega (-\boldsymbol{J} \cdot \boldsymbol{H}_\mathrm{ext})  d{v}  =$ (3.29)
  $\textstyle =$ $\displaystyle \int_\Omega \sum_j
J_{\mathrm{s},j} \sum_{k}^{\{x,y,z\}} u_{j,k} \eta_j H_{\mathrm{ext},k}  d{v}  \quad.$ (3.30)

For the gradient we find
$\displaystyle \frac{\partial E_\mathrm{ext}}{\partial u_{i,l} }$ $\textstyle =$ $\displaystyle -\int_\Omega \sum_j
J_{\mathrm{s},j}
\frac{\partial}{\partial u_{i,l}}
\sum_{k}^{\{x,y,z\}} u_{j,k} \eta_j H_{\mathrm{ext},k}
 d{v}  =$ (3.31)
  $\textstyle =$ $\displaystyle \int_\Omega \sum_j
-J_{\mathrm{s},j}
\sum_{k}^{\{x,y,z\}} \delta_{ij} \delta_{lk} \eta_j H_{\mathrm{ext},k}
 d{v}  =$ (3.32)
  $\textstyle =$ $\displaystyle -J_{\mathrm{s},i}
\int_\Omega
\eta_i H_{\mathrm{ext},l}
 d{v}  \quad.$ (3.33)

Since we know the external field explicitly, we can just simply add it to the other contributions to the effective field.



Werner Scholz 2003-06-08