next up previous contents
Next: 3.3.3 Zeeman Energy Up: 3.3 Discretization Previous: 3.3.1 Exchange Energy   Contents

3.3.2 Magnetocrystalline Anisotropy Energy

The magnetocrystalline anisotropy energy for uniaxial anisotropy is given by

\begin{displaymath}
E_\mathrm{ani}=
\int_\Omega \sum_j
K_1(1-(\boldsymbol{a} \cdot \boldsymbol{u}_j \eta_j)^2)
 d{v} 
\quad.
\end{displaymath} (3.23)

The gradient is given by
\begin{displaymath}
\frac{\partial E_\mathrm{ani}}{\partial u_{i,l} }=
\int_\O...
...dot u_{j,k}\eta_j)
\right)^{\!\!\!\!2}  
\right)
 d{v} 
\end{displaymath} (3.24)


$\displaystyle \frac{\partial}{\partial u_{i,l}}
\left(
\sum_{k}^{\{x,y,z\}} (a_k \cdot u_{j,k}\eta_j)
\right)^{\!\!\!\!2}$ $\textstyle =$ $\displaystyle 2 \sum_{k}^{\{x,y,z\}} (a_k \cdot u_{j,k}\eta_j) \cdot
\sum_{m}^{\{x,y,z\}} (a_m \delta_{ij} \delta_{lm}\eta_j) =$  
  $\textstyle =$ $\displaystyle 2 \sum_{k}^{\{x,y,z\}} (a_k \cdot u_{j,k}\eta_j) \cdot a_l \eta_i$ (3.25)

and we get the result
\begin{displaymath}
\frac{\partial E_\mathrm{ani}}{\partial u_{i,l} }=
-2 K_1 ...
...k}^{\{x,y,z\}} a_k u_{j,k}\eta_j \cdot \eta_i
 d{v}  \quad.
\end{displaymath} (3.26)

This can be rewritten in matrix notation as
\begin{displaymath}
\boldsymbol{g}_\mathrm{ani} = G_\mathrm{ani} \cdot \boldsymbol{u}
\end{displaymath} (3.27)

with
\begin{displaymath}
G_{\mathrm{ani},i,l}=
-2 K_1 a_l
\int_\Omega
\sum_{k}^{\{x,y,z\}} a_k \eta_j \cdot \eta_i
 d{v}  \quad.
\end{displaymath} (3.28)



Werner Scholz 2003-06-08